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Abstract

An large-eddy simulation (LES) formalism based on sampling operators instead of filters is developed. The major

advantage of this approach is that sampling operators commute with the product and their application to nonlinear

terms is not at the origin of any closure problem. In absence of filters that smooth out the small scale structures in

the flow, the discretization errors in the LES are expected to be important. They must be modelled. The possible con-

fusion between modelling and discretization errors is however avoided since these two effects are identical in the present

formalism. A generalized dynamic procedure is proposed for sampling-based LES which allows for model parameter

optimization and does not require a detailed analysis of the discretization error. In addition to its interesting mathemat-

ical properties for LES, the velocity obtained by a spatial sampling is much closer to experimental probe data than the

filtered velocity field.
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1. Introduction

The difficulty in designing a suitable model for the unresolved scales in large-eddy simulations (LES) has

long been recognized as a complex task because of the interplay between modelling and numerical issues

[1–3]. The modelling problem arises when a filter is applied to the Navier–Stokes equations. The presence

of an unknown subfilter stress tensor in the LES equations is the direct consequence of the unavoidable non

commutation of the product and filter operators. Another closure problem may arise when the filter does

not commute with the spatial derivatives. This difficulty can only be avoided by using homogeneous filters,

i.e., filters with homogeneous shape and filter width. However, special filters have been studied that are
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expected to reduce strongly the effects of the non commutation with the spatial derivatives [4,5]. The dif-

ference between the exact and the modelled values of the subfilter terms will be referred to as the subfilter

error [6]. The numerical issues may also have different sources. The discretization error made in approxi-

mating the differential operators that appear in every term in the LES equations is the most obvious

one. It will be referred to as the subgrid scale error. Time stepping errors and aliasing may also affect
the performances of the simulation. Providing separate and accurate estimates for both the subfilter and

the subgrid errors is only possible using the a priori methods [3] since both effects influence the dynamics

of the LES velocity in a complex manner.

A careful analysis of the subgrid errors can be done for direct numerical simulation (DNS). In that case

indeed there is no subfilter stress tensor to model. In particular, grid refinement studies have provided esti-

mates for the resolution that is required in a DNS depending on the parameters characterizing the exper-

iment. Similarly, high resolution LES can be used for estimating the accuracy of the subfilter models. It is

however more difficult to estimate the subgrid errors since simple exact subfilter models are not available.
The major objective of this study is to propose an LES formalism in which no filter is used. The idea is of

course not to advocate the use of unresolved DNS without modelling instead of traditional LES. On the

contrary, because the resolution in the LES is by definition lower than in the DNS, the discretization error

has to be modelled. A class of operators that have good properties for defining the LES velocity without

using filter are the sampling operators. These operators are first introduced for defining the DNS velocity in

Section 2. In the context of LES, the sampling operators are shown to eliminate the subfilter closure prob-

lem and their properties are discussed in Section 3. A generalized dynamic procedure for these sampling

operators is presented in Section 4. It is applied to the decaying turbulence test case in Section 5. A general
discussion on the advantages and difficulties expected from the use of this sampling-based LES is given in

Section 6.
2. A DNS formalism based on sampling operators

The description of the evolution of a fluid in terms of fields like the velocity, the density or the temper-

ature has proven to be very successful. Obviously, this description cannot be valid for very small scales at

which the molecular nature of the medium has to be taken into account. Nevertheless, the description of

fluids in terms of continuous media is robust enough to describe accurately most of the phenomena covered

by the physics of fluids. The velocity, temperature and density fields are even smooth enough to be com-

patible with the necessary discretized treatment imposed by the numerical analysis of the governing equa-
tions of fluid dynamics. In the remainder of this work we limit our attention to the description of the

velocity field ui. For simplicity, we also assume here that it obeys the incompressible Navier–Stokes

equations
otui ¼ NiðukÞ � �ojðuiujÞ � oip þ mDui: ð1Þ

These equations must be supplemented by an initial condition and boundary conditions, which will not

be discussed in details here. However, it is worth stressing that the spatial dependence of ui in (1) is defined

over a physical domain, denoted X � R3 which is a subset of the three-dimensional space. In a DNS, the

situation is obviously different. The DNS velocity, that will be denoted uD0
i , is only defined on a denumer-

able ensemble of positions in X that will be referred to as the grid
GD0 ¼ f~x1; . . . ;~xN0
g; ~xl 2 X: ð2Þ
Here, N0 is the number of grid points. In order to emphasize the difference between the field ui and its
numerical version uD0

i , it is convenient to introduce the following two ensembles of applications: (i) the

ensemble F of functions that apply the positions in X onto a real value and (ii) the ensemble MD0 of
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mappings that apply the grid points in GD0 onto a real value. In the following, it will be important to con-

stantly remember that the velocity field ui corresponds to a vector of elements fromF while the DNS veloc-

ity uD0
i corresponds to a vector of elements from MD0 .

The DNS discretization operator is thus an application fromF to MD0 . In order to be as explicit as pos-

sible, the discretization operators that are considered in the following are systematically sampling opera-
tors. They are defined as the application of any function a 2 F on the mapping aD0 2 MD0 that takes

exactly the same value on the grid aD0ð~xnÞ ¼ að~xnÞ 8~xn 2 GD0 . It is convenient to introduce the notation
uD0
i ¼ SD0Hui ð3Þ
for this sampling discretization operator. It will be shown in the following that this natural choice has some

practical advantages.

An obvious consequence of the discretization is the impossibility to apply the spatial differential opera-
tors oi on an element of MD0 , and in particular on uD0

i . Indeed, these operators correspond to applications

from F to F and they cannot be applied on a mapping from MD0 . Writing the equations for uD0
i thus re-

quires a choice on the representation of the differential operators oi in terms of applications from

MD0 into MD0 . Such a representation is denoted oD0

i . In a DNS, the grid GD0 and the operator oD0

i have

to be carefully chosen so that the discretization error on the differentiation operator
o
D0

i HSD0Ha� SD0Hoia ð4Þ

is reasonably small. The choice for the operator oD0

i implicitly defines the numerical scheme used for the

spatial derivatives. A more sophisticated numerical scheme is usually compatible with a coarser grid but,

in any case, the number of grid points N0 required for an accurate numerical description of the velocity

field is known to be the bottleneck of the development of DNS, especially for highly turbulent systems.

Actually, the exact meaning of ‘‘accuracy’’ for a DNS is not univocally defined. Indeed, the number of re-

quired grid points is expected to depend on the type of velocity statistics that is to be predicted. Accurate

predictions of high order statistics, especially of the velocity gradients, require a finer mesh than the pre-
diction of the second order Reynolds stress tensor. There is however a fairly large agreement to accept that

a DNS focusing on low order statistics of the velocity can be considered as accurate when it captures the

small scales down to the dissipation length. This usually does not imply that uD0
i remains close to ui.
3. A LES formalism based on sampling operators

The LES approach has been designed for lowering substantially the grid requirement for turbulent flows.

At least two viewpoints can be developed regarding the LES. By far, the most widespread formalism as-

sumes that the LES equations have the same status as the Navier–Stokes equations. In particular, the

LES velocity field ui is also an element of F obtained by applying a spatial filter, denoted by the overbar

symbol � � � to the actual velocity field ui. The filtering operator, contrary to the discretization operator, is
thus an application from F into F. This approach is sometimes referred to as the mathematical LES.

Since the equations for ui are defined independently of any numerical approach, we prefer to refer to them

as the filtered Navier–Stokes equations (FNS)
otui ¼ �ojuiuj � oip þ mDui � ojsij: ð5Þ

The hope is that, for a well chosen filter, the accurate numerical treatment of the FNS will require less

grid points than the accurate DNS of the same flow. Without discussing the discretization issues related to

the numerical treatment of the FNS equations, two consequences of this formalism can already be pointed

out. First, the filtering and the product operators do not commute and the FNS equations are not closed.
The so-called subgrid scale stress tensor
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sij ¼ uiuj � uiuj; ð6Þ

is not expressed in terms of the filtered velocity only and requires a modelling effort. The second unpleasant

property of this formalism is the potential difficulty in relating the predictions of the FNS to experimental

data. Indeed, because of the filtering, almost all the statistics of ui are different from those of ui, even the
components of the Reynolds stress [7].

An alternate formalism is developed here. The differences with the traditional formalism are fundamen-

tal. For instance, no filter is used to damp the smallest structures in the turbulent flow. Also, no model is

required for the nonlinearity. The LES velocity is, like the DNS velocity, considered to be obtained by

applying a sampling operator on the velocity field ui. As discussed in the following, the sampling of a prod-

uct being simply the product of the samplings, the nonlinearity does not cause any closure difficulty in the

present formalism. However, discretizing the spatial derivatives does create a closure problem and the mod-

elling effort has to focus entirely on this discretization difficulty. In order to give a precise description of the
alternate formalism, the LES grid is defined explicitly by
GD1 ¼ f~x1; . . . ;~xN1
g; ~xl 2 X: ð7Þ
It is supposed to be significantly coarser (N1 � N0) than the DNS grid. The ensemble of mappings that

apply the grid points in GD1 onto a real value will be denoted MD1 . Moreover, the LES grid will be assumed
to be embedded into the DNS grid GD1 � GD0 . This is not a very restrictive assumption and it allows to

introduce the LES operator SD1 as the product of the discretization operator SD0 that defines the DNS

and the coarsening operator CD1;D0
SD1 ¼ CD1;D0HSD0 : ð8Þ

Hence, the LES operator is an application from F into MD1 and the coarsening operator CD1;D0 is an

application from MD0 into MD1 . Assuming that the LES is also a sampling operator implies that the coars-

ening operator is itself a sampling operator: CD1;D0 applies any mapping aD0 2 MD0 on the mapping

aD1 2 MD1 that takes exactly the same value on the coarse grid aD1ð~xnÞ ¼ aD0ð~xnÞ; 8~xn 2 GD1 .
Such a definition for the LES operator automatically solves the two aforementioned difficulties of the

FNS formalism. First, since the LES velocity uD1
i is a sampling of ui on the LES grid, the Reynolds stress

for uD1
i and ui should be the same. In particular, the comparison between LES and experimental data should

be easier [8] since a velocity defined by a spatial sampling is a better numerical estimate of data obtained

using a probe than a filtered velocity field. Moreover, there is no commutation error between the product

and the discretization operator
SD1H½uiuj�ð~xlÞ � ½uiuj�ð~x ¼~xlÞ ¼ uið~x ¼~xlÞujð~x ¼~xlÞ ¼ ½SD1Hui�ð~xlÞ½SD1Huj�ð~xlÞ ð9Þ
Hence, the term that should be equivalent to the subfilter-scale stress tensor based on the LES operator

SD1 ; sij ¼ SD1H½uiuj� � ½SD1Hui�SD1Huj� � 0, vanishes exactly. The difficulties introduced in using a coarser

grid for the LES are thus, in the present formalism, not related to the treatment of the nonlinear terms.

There is however a price to pay. In the numerical treatment of the LES based on SD1 , it cannot be pretended
that the discretization error is negligible. Writing the equations for uD0

i also requires a representation of the

differential operators oi as an operator oD1

i from MD1 to MD1
otu
D1
i ¼ ND1

i ðuD1

k Þ þ ED1
i � �oD1

j uD1
i uD1

j � oD1

i pD1 þ mDD1uD1
i þ ED1

i : ð10Þ
If the LES mesh is much coarser than the DNS mesh, the discretization error
ED1
i ¼ SD1HNiðukÞ � ND1

i ðuD1

k Þ ð11Þ
is an unknown term that cannot be neglected. The resulting unclosed evolution Eq. (10) define a LES.

Closing the LES equations thus requires the modelling of the discretization error of the differentiation
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operator ðED1
i � MD1

i ½uD1

k �Þ but not of the nonlinear terms. As a matter of fact, aliasing errors are inher-

ently absent in the present formalism because of (9). As a comparison, considering LES based on a

spectral representation, the 3/2 aliasing-removal procedure can be seen as the application of an addi-

tional Fourier cut-off to the product of filtered velocities. Here, the situation is different since it is

not necessary to re-apply a sampling operator on a product to get the proper representation of the
sampling values. There is however again a price to pay. The sampled values of a product of velocities

‘‘hide’’ more high frequencies than those of the velocity itself. This has the consequence that the spatial

derivatives applied to such products in the convective term will lead to more severe truncation errors

than the truncation errors generated by the viscous term (at least for high Reynolds numbers). The nat-

ure of this discretization error should not however be very different from the one of the traditional SGS

terms.

The pressure pD1 has to be computed using the continuity equation. However, because of the truncation

errors, the divergence of the signal uD1
i is not expected to vanish exactly and an additional model playing the

role of a source term in the discretized continuity equation should be introduced
oD1

i uD1
i ¼ KD1 : ð12Þ
This difficulty is actually also present in traditional LES based on inhomogeneous filters as discussed in

[9]. It should be noted that the modelling of KD1 would probably be fairly difficult and might change the

nature of the numerical scheme itself since the incompressibility condition is a very strong constraint in

most numerical methods. To the best of our knowledge, the commutation error in the incompressibility

condition has never been taken into account in more traditional LES in which non-commutative filters
are also used. It might turn out that the only practicable strategy will be to ignore this effect, but numerical

and theoretical investigations of the commutation error in the incompressibility condition would be

welcome.

The above LES viewpoint is very different from the majority of the existing literature on the LES, includ-

ing some previous publications of the present authors. It must however be acknowledged that the discret-

ization of the Navier–Stokes equations is a problem only because it contains spatial derivatives. Nonlinear

terms, without any spatial derivation, would lead to a total decoupling of the different locations. For

instance, no discretization issue would ever be raised and no LES problem would ever be defined for an
equation like
ota ¼ �ca2: ð13Þ

The leitmotiv that the LES equations are not closed because of the nonlinear term has been introduced

because a somewhat misleading comparison has been made with the RANS approach. In that approach

indeed, the RANS equations are not closed because of the nonlinear term. It is obvious that the average

of a product is usually different from the product of the average and a RANS closure problem would be

faced if Eq. (13) is averaged. Similarly, a subfilter closure problem would be faced if Eq. (13) is filtered.

The spatial discretization of this equation is however trivial. The numerical treatment of the FNS formal-

ism somewhat mixes the spatial discretization and the ensemble averaging issues, since the filtering oper-

ator can be seen as a local averaging procedure. The hope in traditional LES is to use the right
combination of: (i) filter, (ii) grid and (iii) model so that the discretization error can be neglected when

simulating the FNS.

In the proposed new formalism, the situation is not very different from traditional LES as long as

the separation between DNS and LES is concerned. The role of the filtering operator is simply replaced

by the coarsening operator. In traditional LES, the DNS limit is obtained when the filter width tends to

0. In that case, the filtering tends to the identity operator. Here, the DNS limit is obtained when, in the

coarsening operator CD1;D0 , D1 tends to D0. In that case, the coarsening operator also tends to the

identity.
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4. Generalized dynamic procedure

A direct consequence of the formalism in terms of sampling operators is that the Germano identity is

useless for these LES since sij = 0. The idea behind the Germano identity can however still be used. Let

us consider a third grid,
Fig. 1.

for tra

transfo
GD2 ¼ f~x1; . . . ;~xN2
g; ~xl 2 X; ð14Þ
that is again embedded in GD1 so that N2 < N1. Note that the idea of using a sampling operator for the test

filter has already been considered recently in [10] and implemented with a Smagorinsky type model for the

Burgers equation [11]. Using the same terminology as in the context of the dynamic procedure, it will be
referred to as the test-level. The velocity sampled on this coarse grid will be denoted uD2

i . It is a vector

of elements in the ensemble MD2 of mappings that apply the grid points in GD2 onto a real value. A sche-

matic representation of the physical domain X and of the three grids is given in Fig. 1.

The equations for uD2
i are written as
otu
D2
i ¼ ND2

i ðuD2

k Þ þ ED2
i � �oD2

j uD2
i uD2

j � oD2

i pD2 þ mDD2uD2
i þ ED2

i ;
where
ED2
i ¼ SD2HNiðukÞ � ND2

i ðuD2

k Þ: ð15Þ

The equations for uD2

i are here obtained by applying the discretization operator SD2 directly to the

Navier–Stokes equations. They can however also be obtained by applying a coarsening operator CD2;D1

to the equations for uD1
i and both versions should be equivalent since SD2 ¼ CD2;D1HSD1
otu
D2
i ¼ CD2;D1HND1

i ðuD1

k Þ þ CD2;D1HED1
i : ð16Þ
Comparing the right-hand-side of Eqs. (15) and (16) immediately yields the following identity:
ED2
i � CD2;D1HED1

i � CD2;D1HND1
i ðuD1

k Þ � ND2
i ðuD2

k Þ; ð17Þ
The physical domain X and the DNS, LES and test-level grids are schematically represented. The sampling operators required

nsforming a function defined on X into a mapping defined on a grid are mentioned. The coarsening operators used for

rming a mapping defined on a fine grid into a mapping defined on a coarse grid are also indicated.



104 B. Knaepen et al. / Journal of Computational Physics 205 (2005) 98–107
which can play exactly the same role as the Germano identity for the LES formalism developed here. It can

be used following the same strategy as for the traditional dynamic procedure [12–14]. For instance, the dis-

cretization error on the LES grid can be modelled by a function of the discretized velocity uD1

k multiplied by

an unknown parameter: ED1
i � CmD1

i ðuD1

k Þ. Similarly, the discretization error on the test-level grid can be

modelled using the same type of model. Invoking the same scale invariance assumption as in the dynamic
procedure, the same parameter C could be used on both grids: ED2

i � C mD2
i ðuD2

k Þ. The optimal value for C

would thus be given by
C ¼ hLiMii
hMiMii

; ð18Þ
where
Li ¼ CD2;D1HND1
i ðuD1

k Þ � ND2
i ðuD2

k Þ;
Mi ¼ mD2

i ðuD2

k Þ � CD2;D1HmD1
i ðuD1

k Þ;
where the average is taken over the direction of homogeneity. The vector Li plays the same role as the Leon-

ard tensor in the traditional dynamic procedure. The parameter C given by (18) is only defined on the test-
level grid GD2 . An interpolation, consistent with the numerical scheme used for the derivatives, has to be

used to evaluate C on the LES grid GD1 if C is allowed to be inhomogeneous.

Although the modelling of the source term KD1 appearing in the discretized continuity Eq. (12)

is expected to be very challenging, it would also be possible to use a dynamic approach for it.

Indeed, two equivalent versions of the discrete continuity equation on the coarser grid GD2 can be

written by applying SD2 directly to the continuity equation or by applying CD2;D1 on Eq. (12). A

minimization procedure could then be considered to optimize the parameter appearing in the model

for KD1 .
5. Numerical results

In order to illustrate the possible implementation of these concepts, we have considered the modelling of

the discretization error by the Smagorinsky model. In that case, the vector Mi is given by
Mi ¼ D2
2o

D2

j jsD2 jsD2
ij � SD2HD2

1o
D1

j jsD1 jsD1
ij : ð19Þ
The tensors sD1
ij and sD2

ij represent the strain tensors evaluated on the LES and test grids respectively. The

LES and test grid spacings are noted respectively D1 and D2. It must be acknowledged that the modelling of

the discretization error by an eddy viscosity term is questionable. Moreover, a priori test have shown that

the correlations between the ‘‘exact’’ unknown term ED1
i and its representations in terms of the Smagorinsky

model are very poor (about 12%). However, since the dynamic Smagorinsky model has been thoroughly
benchmarked and, at the very least, it has the property to be dissipative so that it should stabilize the sim-

ulation, there is some rationale to evaluate and test the dynamic procedure for this model in a first step.

This model has been implemented in a pseudo-spectral code with modified wave vectors in order to mi-

mic the behavior of a second-order centered finite difference scheme. Although this method is not compu-

tationally optimal, it has the advantage to be very easy to implement both for the DNS and for the LES.

The computational domain is a cubic 2p · 2p · 2p box. The DNS grid, GD0 , corresponds to a 2563 resolu-

tion and the modified wave vectors for the finite difference scheme ~k
FD

are defined by
~k
FD ¼ ðkFDx ; kFDy ; kFDy Þ ¼ 1

D0

sin kSxD0

� �
; sin kSyD0

� �
; sin kSzD0

� �� �
; ð20Þ
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ðk2ÞFD ¼ 4

D2
0

sin2 kSxD0

2

� �
þ sin2

kSyD0

2

 !
þ sin2 kSzD0

2

� � !
; ð21Þ
where~k
S
is the usual wave vector in the pseudo spectral code. Note that, in the finite difference scheme, the

discretization of the second order derivative is not obtained as the ‘‘square’’ of the first order derivative and

consequently different definitions are used for the modified wave vectors entering the first and the second

order derivatives. The quantity (k2)FD is only used in the viscous term. In the DNS, the incompressibility

condition is enforced by projecting the velocity ~uð~kFD
Þ in the plane perpendicular to ~k

FD
. The sampling

operators SD1 and SD2 are implemented straightforwardly in real space. The LES field is obtained by sam-

pling using SD1 on a 323 grid. The implementation of the dynamic procedure using the grids GD1 and GD2 is

then performed by a simple re-definition of the modified wave vectors (20) and (21) in which D0 is substi-

tuted respectively by D1 and D2.

The preliminary tests, though made with a modified spectral code and a limited resolution, are quite illu-

minating. First, it shows clearly that a model is required for the decaying turbulence case. The under-

resolved DNS (LES without model) exhibits an increase of the energy after a short decaying period. The

dynamic Smagorinsky model has been implemented in three versions. Indeed, the ‘‘Leonard’’ vector Li con-
tains two contributions originating respectively from the convective + pressure terms and from the viscous

term. In the computation of the dynamic Smagorinsky constant C, the purely convective, the purely viscous

and the full Leonard vectors have been implemented. Not surprisingly, the purely viscous version does not

perform satisfactorily. It is actually even worse that the no-model case. Also, the purely convective version

produces the best agreement with the sampled DNS. The final spectra are also presented. They all exhibit a

piling-up of the energy in the high wave vector range. However, the no-model and the purely viscous

dynamic model both overpredict the low wave vector energy range, while the dynamic models that account

for the convective discretization errors both correctly predict the low k spectrum (see Fig. 2).
Although it would be quite hazardous to make definitive and strong statements on the basis of these

preliminary numerical results, they indicate that: (i) the implementation of a dynamic procedure with the

sampling operators yields reasonable predictions in the homogeneous decaying turbulence test case and

(ii) the Smagorinsky model might be acceptable for modelling the numerical discretization errors on the

convective term but not for the viscous term.
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The treatment of the incompressibility condition deserves some attention. In the present LES, it has been

chosen to neglect the source term Ki in the sampled continuity equation. As previously mentioned, finding

a model for Ki is probably very uneasy. However, neglecting this term implies that the incompressibility

has to be enforced by projecting the LES velocity field in the plane perpendicular to the modified wave vec-

tors based on D1. As a consequence of this projection, the definition of uD1
i is slightly different from

SD1Hui and uD0
i and uD1

i do not coincide exactly on the grid GD1 . The differences are however not very large.

Moreover, the combination of the sampling and the incompressibility projection remains nevertheless a

projective operator.
6. Discussion

It has been mentioned that the formalism developed here is fundamentally different from the traditional
viewpoint on LES. In its implementation however it will have strong similitude with the discrete filtered

Navier–Stokes treatment of turbulence. Indeed, both versions of the LES are using a coarse grid. Also, both

versions have to rely on a model for taking into account the unresolved scales. Hence, as long as the sim-

ulation itself of the LES equations is concerned, the difference might seem quite superficial. Nevertheless, in

many other aspects of the LES development, the use of sampling operators to define the LES velocity

should have a direct and strong influence.

We have already mentioned that the dynamic procedure can be adapted to this type of operators. In that

case, the model has to be understood as a model for the discretization errors and not for the commutation
errors between the product and a filtering operator. The structure of the dynamic coefficient as well as the

general strategy based on a coarser grid look similar to the traditional dynamic procedure based on the

Germano identity. The precise form of the coefficients is however significantly affected by the formalism.

Another domain that is affected by the formalism is the traditional ‘‘a priori’’ technique for estimating

the potentialities of a model. Since in the present formalism the model is supposed to represent discretiza-

tion errors, correlation should be measured with these discretization errors instead of the subgrid-scale

stress tensor computed from DNS. It has been mentioned that the Smagorinsky model has a very low

correlation with the exact discretization error term ED1
i .

It is not the purpose of this work to claim that the LES formalism based on the sampling operators

solves all the difficulties that are met in developing accurate subgrid-scale models. It indeed eliminates most

of the known difficulties but new issues are raised. For instance, the subgrid-scale stress tensor sij vanishes
but a model is required for the discretization error vector ED1

i . Also, the statistics of traditional LES velocity

are affected by the filter and by the model. Here, this difficulty disappears but statistics of the velocity gra-

dients are also affected by the sampling operator. Finally, one of the difficulty of the traditional dynamic

procedure comes from the spatial dependence of the model parameter. Because of the filtering, the optimal

parameter should normally be obtained using an integral equation [15,16]. Again, this difficulty seems to
disappear here because the sampling of CmD1

i is equal to the sampling of C multiplied by the sampling

of mD1
i . However, since the model has to be the divergence of a term, there will be discretized differential

operators oD1

i and oD2

i applied to the model parameter. Hence, a local version of the dynamic procedure still

remains difficult to build starting from clean mathematical principles.

The main purpose of this paper is rather to emphasize that an alternate viewpoint can be consistently

developed for the LES. It is motivated by the evidence that nonlinearities are not the source of difficulties

when a space-accurate simulation of a partial differential equation has to be designed. The difficulties rather

originate from the coupling between different locations induced by the spatial derivatives. The present for-
malism is also motivated by the total decoupling that it implies between traditional subfilter modelling and

numerical errors. Indeed, the subfilter stress tensor vanishes exactly so that the model has to deal with and

only with the discretization errors. As a consequence, in this approach, it is not possible to reach a grid
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independent LES since the LES operator is directly defined by the grid. Although based on a fairly different

viewpoint and using sampling operators, the formalism developed here has the same potentialities as tra-

ditional LES in terms of: (i) grid saving, (ii) a priori testing, (iii) possibility of developing a dynamic

procedure.

We conclude by emphasizing that the numerical results presented here have not to be considered as an
attempt to advocate the use of the Smagorinsky model for the discretization error. The main goal of this

study is to be an account on a novel viewpoint on LES that is mathematically well posed. Although the

results are encouraging, the tests in Section 5 only prove the numerical feasibility of the proposed method.

More extensive a priori and a posteriori tests are definitively required to demonstrate that the present for-

malism is able to compete with more traditional approaches.
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